Configuration¶
LLMBuilder uses a configuration system that makes it easy to customize your model training.
Configuration Overview¶
LLMBuilder configurations are organized into sections: - Model Config - Architecture settings - Training Config - Training parameters - Data Config - Data processing settings
Configuration Methods¶
Method 1: Using Templates (Recommended)¶
LLMBuilder provides pre-configured templates:
# List available templates
llmbuilder config templates
# Create configuration from template
llmbuilder config from-template basic_config --output my_config.json
Available templates:
- basic_config - General purpose
- cpu_optimized_config - CPU training
- advanced_processing_config - Full features
Method 2: Using Code Presets¶
from llmbuilder.config.defaults import DefaultConfigs
# Load a preset configuration
config = DefaultConfigs.get_preset("cpu_small")
Method 3: From Configuration File¶
from llmbuilder.config.manager import load_config
# Load from JSON file
config = load_config("my_config.json")
Model Configuration¶
Core Settings¶
{
"model": {
"vocab_size": 16000,
"num_layers": 12,
"num_heads": 12,
"embedding_dim": 768,
"max_seq_length": 1024,
"dropout": 0.1
}
}
vocab_size: Size of the vocabulary
num_layers: Number of transformer layers
num_heads: Number of attention heads
embedding_dim: Dimension of token embeddings
max_seq_length: Maximum sequence length
dropout: Dropout rate for regularization
Training Configuration¶
Basic Settings¶
batch_size: Number of samples per training step
learning_rate: Step size for parameter updates
num_epochs: Number of training epochs
Next Steps¶
- Training Guide - Learn about training models
- Data Processing - Process your data
- Tokenization - Train tokenizers
Start with the basic templates and modify as needed.